CVaR 风险度量及投资组合优化的实证分析






【摘要】CVaR 法是在 VaR 法基础上优化改进而来的风险度量方法。通过 CVaR 法对金融资产风险进行评估,对投资组合资产配置进行优化等成为了金融风险管理的重要内容。本文首先对比了 CVaR 和 VaR 法的区别,并通过比较 A 股和 H 股收益分布的特征得出 A 股更适用 CVaR 模型的结论。通过多因子选股模型选出投资组合成分,再使用均值-CVaR 模型对投资组合进行优化,最终得到不同置信度和阀值下投资组合的优化结果。从而证明了该模型的有效性,突出了 CVaR 法在国内证券市场的使用价值和意义。
【关键词】CVaR VaR 投资组合 优化
一、引言
金融危机的周期性使得金融监管与金融风险管理成为了一直以来的焦点问题。如何在危机中减少甚至避免金融资产受到损失成为了理论研究与从业人员共同面对的难题。上世纪九十年代开始,VaR 成为了金融风险度量最主要的模型。随后,压力测试、情景分析、返回检验等作为针对 VaR 缺陷的弥补手段开始广泛运用在金融机构风险管理中。而 CVaR 则在 2000 年左右作为 VaR 的改进方法被首次提出,迅速受到了学者的广泛关注和研究。
中国证券市场起步较晚,前后尚不足三十年时间。目前仍旧存在制度不完善、金融机构不成熟、金融工具不全面等问题,对于「收益率神话」过分追捧。2014 年 8 月开始,中国股票市场在杠杆效应和改革消息的刺激下指数急剧上涨,在 10 个月时间内上涨超过 150%,却又在随后不到 20 个交易日内暴跌 35%。对于杠杆的过度使用和对风险的忽视造成了难以补救的资产损失,引起了金融监管者对于风险的关注。
作为股票市场运行的极端情况,这样的真实数据为金融风险管理和资产安全性评估提供了重要依据。通过使用风险度量模型来对投资组合进行优化,并在此基础上利用这类数据进行回测模拟是发达国家金融风险监管较为常见的测试方法。本文则是在与 VaR 对比分析基础上利用均值-CVaR 模型来对投资组合进行优化,并利用数据进行检验模拟,从而验证 CVaR 方法的有效性。
二、CVaR 度量效果的对比分析
从提出的时间和理论基础来看,CVaR(Conditional Value at Risk)是 VaR(Value at Risk)的改进和修正方法。但作为风险度量方法,两者都具有各自的优劣特征,并被广泛运用到理论研究和实际风险控制中。
(一)VaR 原理及特征
VaR,即在险价值法。意义为在一定的时间内,在一定的置信度下,投资者最大的期望损失。用数学或统计学的方式来表达即为:
在 John C.Hull 的着作《Options,Futures,and Other Derivatives》中,将 VaR 在实际运用中的结论定义为:有 X% 的把握,在今后的 N 天内损失不会大于 V。
VaR 作为风险度量的方法,最核心的参数为时间展望期(N 天)和置信度(X%),用于描述在今后的 N 天内,当损失在 1-X 这个左尾分位点上时的期望值。
VaR 的计算方法主要分为三种:历史模拟法(historical simulation approach)、模型构建法(model-building approach,也叫参数模型法)、蒙特卡洛模拟法(Monte Carlo simulation approach)。
表 1 VaR 主要计算方法简介
表格 2 VaR 主要计算方法优缺点对比
VaR 的主要性质和特征包括:
(1)变换不变性:VaR(X+a)=VaR(X)+a,a∈R;
(2)正齐次性:VaR(hX)=hVaR(X),h<0;
(3)协单调可加性:VaR(X1+X2)=VaR(X1)+VaR(X2);
(4)不具有次可加性和凸性:这违背了组合投资能够分散风险的特性;
其中次可加性是 VaR 法存在一致性度量缺陷的主要原因。为了具有一致性度量的效果,通常会通过引入压力测试,针对极值使用 BMM 和 POT 来进一步分析。
(二)CVaR 原理及特征
CVaR,即条件风险价值。意义为在一定的时间内,在一定的置信度下,投资者超过 VaR 分界点损失的期望值。用数学或统计学的方式来表达即为:
CVaRa=E(X|X≥VaRa)
从表达式中可以看出,CVaR 相比于 VaR 更关注尾部风险。这也和两者的性质有关。VaR 实际是一个分位点,而 CVaR 则是条件期望值,是超过某个分位点的损失的平均值。因此 CVaR 更加能够反映投资组合潜在的极端损失。作为 VaR 风险度量方法的改进,不仅保留了 VaR 的一些性质,如变换不变性、正齐次性等,还满足了次可加性:ρ(X+Y)≤ρ(X)≤ρ(Y)。
(三)VaR 与 CVaR 在股票市场适用性的对比分析
相比于 VaR,CVaR 对极值风险的衡量更加全面。因此在风险度量方面显得更为保守。在同一置信水平下,CVaR 值必然大于等于 VaR 值。在前文中强调了 VaR 法对于厚尾或「突尾」缺乏度量的准确性,而 CVaR 则通过度量期望值的方式综合考虑了整体尾部风险,使得结果更趋于真实,从而改善了风险度量的效果。
对于一个以股票作为投资标的的投资组合而言,VaR 和 CVaR 本身的差异是影响其最终风险度量效果的因素之一。此外,不同的股票交易制度,也会影响到股票价格的波动。是否存在涨跌停板限制和是否实行 T+0 制度是影响其收益率分布的重要因素。为了更进一步分析不同交易制度对风险度量效果的影响,本文以同时在上海(或深圳)和香港证券交易所上市交易的股票作为分析对象,对比其在接近相同的消息政策环境下,由交易制度本身引起的收益率分布和度量效果差异。
由于本文是以沪深 300 成份股的组合作为研究基础,因此为了保持上下文一致性,选取的公司不仅都含有 AH 股,同时也是沪深 300 的成分股。这 10 家具有代表性的公司分别为:白云山、潍柴动力、金风科技、中国远洋、洛阳钼业、金隅股份、中国中车、兖州煤业、比亚迪、中国神华。
选取 2013 年 10 月 23 日 ~2015 年 7 月 15 日共 420 个左右交易日(存在 AH 股交易日存在一定区别以及个股停牌情况,但整体统计量都保持接近)的数据统计 AH 股之间标准差和峰度的差异,结果如下:
表 3 AH 股收益率分布情况对比表
从表中对比可以看出,几乎所有的 H 股都具有相对更大的峰度。这是因为这些股票较容易受到突发性的利好的影响,并在一天内迅速对股价的合理定价进行调整,而在 A 股市场则往往会出现连续的涨(跌)停或连续上涨(下跌)来进行调整。这就导致 H 股中更加容易出现极端涨跌幅,而大部分时候则可能随着市场整体走势而变化,因此在 H 股中更容易出现尖峰肥尾分布。
尽管 H 股的峰度相比 A 股要更加大,但对比标准差可以发现,两者在数值上相差不大甚至 A 股的标准差要大于 H 股。这说明涨跌停板制度限制了收益分布的发散范围,但在-10% 和 10% 之间分布要比 H 股相对更均匀。下图为中国中车 AH 股收益率分布对比图,在交易日数量均等的情况下,A 股在-0.1 和 0.1 之间的分布数量显然大于 H 股,而在 0 涨幅左右的分布 H 股大于 A 股,因此也说明 A 股在峰度偏小的情况下标准差与 H 股相差不多的原因是在涨跌停范围内分布比较而言更平均。
图 1 中国中车 AH 股日收益分布图
对比而言,一个不设幅度和交易频率的开放市场上,其收益率分布会显得更加发散,其尾部较长。而在设置了涨跌停板限制的市场上,其尾部分布相对较短、厚。尽管 A 股峰度小于 H 股,但 VaR 和 CVaR 是以其实际分布的分位点作为基本依据,因此仍然无法判断两类股票在不同度量方式下的具体情况。
为了进一步进行比较,要对这 10 家公司两类股票在不同度量方法下的风险价值进行计算。为了保持数据和方法的一致性,针对前文中使用的历史数据分别计算其在 95% 置信水平下的 VaR 和 CVaR 值。结果如下:
表 4 AH 股 95% 置信水平下的 VaR 和 CVaR 值对比表
10 家公司的 VaR 值较为接近,AH 股 VaR 值差值基本都在 0.5% 以内。以白云山的 AH 股为例,VaR 值几乎相等,说明其收益率分布小于-4.15% 的数量几乎完全相同,占收益率总数的 5%。而 A 股 CVaR 值要大于 H 股,这代表 5% 内损失平均值 A 股大于 H 股。这说明 A 股的尾部风险实际上普遍大于 H 股。因此可以得出结论:不论在何种市场,CVaR 作为 VaR 的改进方法,具有更加准确的风险度量能力。而在具有涨跌停板限制的股票市场上,CVaR 则显得尤为重要,更全面的反映了尾部风险。
需要注意的是,当置信水平提高到 99% 时,AH 股之间关于 VaR 和 CVaR 度量效果的对比就失去了多数意义。因为涨跌停板的存在,使得单个股票的收益率分布中尾部的 1% 很可能都处于-10% 的位置。在这种情况下,H 股的风险价值就会大于 A 股,但这是由制度造成的度量失真。真实情况是,由于涨跌停板限制,市场需要花一段时间去调整其价格,因此其尾部风险需要通过计算一段时间内的 VaR 和 CVaR 来反映,限于篇幅不再在本节展开论述。
三、投资组合的建立和分析
(一)投资组合成分的选取
为了有效选择成分组成投资组合,在实际过程中,基金和个人投资者等需要对整个市场上的股票进行筛选。为了保证数据的代表性和合理性,本文以沪深 300 成分股作为筛选对象,通过使用多因子模型来进行客观、量化的筛选。
多因子模型是在量化投资领域最为常用的选股模型,度量不同因子的收益回报能力来评判股票是否值得买入和持有。多因子模型主要分为候选因子的选取和有效性检验、因子剔除和综合评分模型几个步骤,判断方法上分为打分法和回归法。本文采用打分法的方式来进行筛选。
标的股票:沪深 300 成分股中的 251 只上市满 2 年的非金融股(金融股因为盈利模式原因导致其诸多财务指标上都和其他行业不具有可比性,而上市不满 2 年的股票价格周期不一定完全且缺少 24 个月的 BETA 值和波动率数据)
样本期间:2014 年 1 月 1 日 ~2014 年 12 月 31 日涨幅和年报财务指标。
因子分布:共计 12 个候选因子,其中成长性因子包括 EPS 增长率、主营收入增长率、主营利润增长率、净资产增长率、总资产增长率,技术面因子包括年平均换手率、24 个月 BETA 值、24 个月年化波动率、股东人数增长率,估值因子包括 12 个月股息率,资本结构因子包括流通 A 股数量,盈利因子包括净资产收益率。
在进行因子有效性检验时,首先要对 251 只股票按照不同因子的值进行排序,从而选出前 50 的组合,并求出其年平均收益,并求出整体因子与收益率的相关系数,再和后 50 的组合进行对比求出差额收益,结果如下:
表 5 多因子模型候选因子统计结果
从表中可以看出,24 个月 BETA 值的收益率是最好的,这也和其本身的计算公式有关。此外,技术类指标情况明显好于成长类等指标。综合考虑之后,留下 6 个有效因子:EPS 增长率(X1)、流通 A 股数量(X2)、12 个月股息率(X3)、24 个月年化波动率(X4)、24 个月 BETA 值(X5)、年平均换手率(X6)。
由于各类因子的量级不同,因此需要对各类因子进行标准化得分处理(ZX1 即代表标准化后的 X1),再通过相关性检验统计各因子之间的相关性和因子与收益率的相关性,如下表所示。
表 6 各标准化因子及全年涨幅相关性
在经过剔出和标准化后,因子相互之间的相关性都在 0.4 以下甚至 0.1 左右,代表各因子能够从不同维度对股票进行评估。而根据各标准化后的因子与全年涨幅的相关性,对股票进行相关性加权打分。βx 代表第 x 个标准化因子和全年涨幅的相关性,公式如下:
对 251 只标的股票进行得分排序,最后得到的是根据多因子量化选股模型下具有上涨潜力的股票,体现的是在统计学上每个股票的得分和涨幅存在较高比例的相关性。选出得分前 10 只股票组成投资组合,仍需要再进一步进行测试来证明其筛选的有效性,其主要表现为是否具有超额 α 收益。本文用 2015 年上半年的数据再来进行验证,得到如下结果:
表 7 多因子模型下沪深 300 成分股筛选情况
表 8 多因子组合对比收益表
从表中看出,通过多因子模型选股之后,该组合获得了超过同期大市(沪深 300)119.62% 的收益率。对比之下,可得出结论,该组合通过这些因子获得的有效超额收益率为 15.29%。
(二)投资组合的建立
为了更加直观的反映出投资组合整体的收益状况,需要将其作为一个整体进行分析。在前文中,该组合的收益分析已经默认使用了简单平均收益,即每个组合成分的比例是相同的。主要是基于一下两点考虑:(1)多因子得分和收益率并非完全正相关,因此即便完全遵循由得分加权的比例分配原则也未必获得更大的收益;(2)投资组合需要综合考虑风险和收益要素,即在风险一定的情况下收益最大化,简单平均比例配置有助于对组合各方面进行初步的了解和认识,以便于进一步的优化和对比。
构建整体走势,要将 10 个成分股的价格序列转化为收益率序列,并通过相同权重加权的方式组成收益率序列。假设初始资产为 1 单位,下图为 2013 年 7 月 15 日至 2014 年 12 月 31 日组合收益率走势:
图 2 投资组合 360 个交易日内收益曲线
(三)投资组合的风险分析
生成投资组合整体的日间收益数据后,需要对数据进行进一步的分析。其中关于风险目前最通用和有效的量化指标就是最大回撤。最大回撤是在选定的一段时间内(2013 年 7 月 15 日 ~2014 年 12 月 31 日),某投资组合的收益率从某个时间点往前推,阶段性收益率最大值到最低点的回撤幅度,以此来衡量投资组合在建仓后可能面临的最大可能亏损。最大回撤的计算往往十分简单,但由于需要进行反复对比,本文通过使用 MATLAB 程序直接进行统计运算,求出 Maxdrawdown 比例为 30.71%。即假设投资者在第 51 个交易日建立投资组合,一直持有到第 162 个交易日将要面临 30.71% 的损失。
尽管本文对于投资组合的选择,是建立在 2014 年的财务和技术面数据基础上,但最大回撤内在含义是过去发生的亏损在未来也可能面临。因此这是考量投资组合风险的重要维度。
由下表统计结果对比标准正态分布可知,该投资组合显然是一个偏态分布,且在分布上略向左偏。这和该组合总收益率较高相符合。峰度则是判断是否存在厚尾现象的重要的参数。一般定义大于 3 的峰度为过度峰度,并判定为存在厚尾现象,在这样的情况下直接用分位点作为其风险价值会低估其真实损失。
表 9 投资组合收益分布参数表
图 3 投资组合收益率分布及 95% 分位点
用该投资组合收益率分布数据进行风险价值计算。从表中结果可以看出,CVaR 值随着置信水平的提高和 VaR 差值缩小。以 99% 的 CVaR 为例,代表该投资者组合在 1 天内有 99% 的把握损失不大于 5.08%。而通常 N 天的 CVaR 值则为:
表 10 历史模拟法下各置信水平对应的 VaR 及 CVaR 值
四、基于 CVaR 的投资组合优化
一个投资组合是由若干种证券按照各自的权重加权组合而成的,其收益率则是其各自收益率的加权之和,而风险则并非是简单的加权总和。但对于投资者而言,最根本的目的是要在保持风险一定的情况下,做到收益率最大化;或是在收益率一定的情况下,保持风险最小。Markowitz 最早在 1952 年提出了资产组合理论,并通过用均值和方差的方式来度量投资组合的风险和期望收益,从而根据风险偏好在有效边界上得出最有效的投资组合方案。
均值-方差模型的计算量较大。尽管随着计算机运算能力的提升这已不再是难题。但由于风险的度量远比期望收益率复杂,因此用方差和标准差来代表风险的做法开始被其他方式取代。为了更好的度量下行风险,半方差(Semi-variance),主要计算小于均值或目标收益的收益分布情况,舍弃了对良性收益的度量。本文则以均值-CVaR 作为投资组合优化的主要模型。
(一)均值-方差模型与有效前沿
均值-方差模型最基本的参数为基于各部分资产收益率的均值和其方差。并假设其收益率之间存在相关性,且可以通过计算其协方差和相关系数来表达。均值-方差模型的主要表达式为:
或者
其中 Xi 代表第 i 种资产在组合中的权重,ri 代表第 i 种资产的期望收益率。X=(X1,X2,X3,…Xn)T,c 为预期收益最低值,b 表示组合最大方差(风险值)。C 则用来表示各资产之间的协方差矩阵。
当有两种投资组合具有相同的方差的情形下,投资者会毫不犹豫的选择预期收益率较大的投资组合,而当具有相同的预期收益情形下,投资者同样会选择风险较小的投资组合。基于数学表达式和投资者的理性假设所得出的可能的投资组合有效集就是有效前沿。显然,有效前沿是由各种组合方式组成的一条边界线。
将前文中筛选的股票以其历史收益率序列作为统计样本计算出均值方差以及相互之间的协方差,来绘制该投资组合的有效前沿。
下图 4 是经过 100 次有效前沿点分布计算后形成的曲线。从该曲线中可以看到,随着 x 轴标准差不断增加,y 轴均值趋近 0.4%。即该投资组合成分股中平均收益率最高值为 0.4%。而当 y 轴的值不断减小,x 轴上所能达到的最小标准差在 0.014 附近,意在说明该组合无论如果优化所能达到的最小标准差(风险)约为 0.014。
图 4 投资组合均值-方差模型有效前沿
(二)均值-CVaR 模型与有效前沿
用 CVaR 来作为反映风险的参数与半方差一样,都更加准确的反映了下行风险。而方差则是反映了整体上下波动的风险。在前文中已经证明,在证券市场,尤其是在中国的股票市场,CVaR 对于风险具有更有效的度量能力。使用均值-CVaR 模型不仅需要各成分股的收益率均值、方差与协方差等参数,同时还需要定义其置信水平值。其数学表达式可描述为:
均值-CVaR 的目标函数参数与均值-方差模型类似。但均值-CVaR 模型随着其分布假定的不同,会有不同的具体形式,如正态分布、指数分布、对数正态分布、Gamma 分布和广义 Pareto 分布等。文中均值-CVaR 模型是基于历史收益率分布的一般形式。
为了对比不同置信度下,均值-CVaR 模型的有效前沿分布变化,本文使用 MATLAB 对 95% 和 99% 置信度下均值-CVaR 的有效前沿进行模拟。
图 5 不同置信度下均值-CVaR 模型有效前沿
从图中可以看到,99% 置信度下的有效前沿处于 95% 置信度下有效前沿的下方,从竖直方向说明在同样的 CVaR 阀值下,如果使用 95% 的置信度可以认定为能够取得更加高的收益率。也即说明 99% 置信度是一个更加严苛的衡量标准,也同样意味着同一个期望收益率,99% 置信度下面临更大的风险。而两种置信度下所能取得的最大期望收益是相同的。这是因为置信度是对 CVaR(风险)进行的衡量,所以并不影响取得最大期望值,只是会「滞后」于 95% 的置信度。
下图为两条有效前沿和均值-方差模型的有效前沿进行比对。从中可以看到,将均值-CVaR 模型的 x 坐标轴由 CVaR 值转换成标准差后,其有效前沿不再是一条规则光滑的曲线,且两条均值-CVaR 模型的曲线都在均值-方差模型的下方,并随着 x 轴数值的增大收敛于 0.4% 附近。
显然随着 x 轴数值的增大,投资组合中不同股票的权重将由分散变得集中,直到组合内只留下一种股票。在前半段,同样的标准差对应的期望收益差别较大。这说明在组合权重较为分散的时候,均值-方差模型和 95%、99% 置信度条件下的均值-CVaR 模型对于该组合的风险判断分歧较大。就整体而言,优化后投资组合配置的多样性随着 CVaR 值的增大先增强后减弱。因此,对于投资组合的优化过程需要选择合适的优化模型。在本文中则还需要对均值-CVaR 模型的置信度和风险阀值进行设定,从而求出最佳配置解。
图 6 两类模型有效前沿对比图
图 7 两类模型有效前沿组合权重变化图
(三)投资组合优化与检验
将 10 只股票从 2013 年 7 月 15 日至 2014 年 12 月 31 日共 359 个交易日的收益率序列进行分析,根据设定的风险值求出最佳投资组合权重比例。
表 11 不同置信度下组合配置比重表
每组优化结果对于不同股票的配置呈现出很大的差别,在表中存在一部分配置的比例接近于 0,为了计算方便将在后面对的计算中不再考虑在内。实际上每一组配置的股票数量在 3-5 只股票之间。这说明从均值和以 CVaR 作为风险的角度来说,有一部分股票在特定条件下是缺乏效率的。并且这种效率的缺乏是相对的。如中国建筑,在 95% 置信水平下 CVaR 为 2.5% 的环境中,不具有可取性。但在 99% 置信水平下 CVaR 为 2.5% 的环境中,则变得相对有效。这是因为不同的股票的尾部特征和整体收益各异。而尽管通过多因子模型筛选显示出外高桥具有一定的上涨潜力,但客观而言其走势明显弱于其他股票。使用均值-CVaR 模型进行优化后可以发现,5 个组合在外高桥上的配置几乎都是 0,有效提升了投资组合的表现。
以上是基于 2015 年前的日线数据进行的投资组合建立和优化。为了更好地对均值-CVaR 模型的优化结果进行评价,需要引入新的数据来进行检测。本文选取 2015 年上半年数据进行测试优化结果,主要有三点考虑:第一,2015 年上半年股市走势适合检验多因子投资组合的收益表现;第二,2015 年 6 月到 7 月初出现的「股灾」又恰好是对目前所有风险模型的风险管理效果的最佳测试,因为这次暴跌的数据是不仅是真实存在的,而且也是前所未有的。能够更准确的评估模型的优化效果;第三,暴跌过程中,进入该组合的成分股没有出现停牌现象,因此其下跌风险是完全暴露在市场风险环境下,具有测试的真实和准确性。
假设投资者在 2014 年 12 月 31 日买入以上 5 种组合以及前文中的等权重组合(组合 6),并持有至 2015 年 7 月 13 日。以实线代表该不同投资组合在这段时间内的走势,虚线代表同期沪深 300 现货指数走势。具体情况如图所示:
图 8 6 种投资组合与同期沪深 300 走势对比图
由下表可以看出,通过均值-CVaR 模型优化后,1-5 号投资组合的收益率明显高于简单算术平均的 6 号投资组合。同时,1-5 号投资组合的风险指标,下半方差和最大回撤也明显高于 6 号投资组合。这意味着,前期上涨过快的投资组合往往具有较大的回调空间。为了综合风险和收益,本文选用信息比率作为综合指标进行度量发现,1-5 号投资组合中只有 2 号投资组合弱于 6 号投资组合。其他的投资组合信息比率优于 6 号。其中 5 号投资组合与 6 号相比风险调整后收益十分显着。
表 12 6 种投资组合绩效考核指标表
总结来看,CVaR 阀值越低越容易限制投资组合整体的表现,而 99% 置信度下低阀值则更加容易导致投资组合出现结果不理想的情况,风险度量标准并非越严苛越佳。而低置信度低阀值与高置信度高阀值相比,则显示出高置信度高阀值的优势,对比中依然是后者在综合评价上具有更优异表现。
五、总结与展望
1999 年,VaR 成为《新巴塞尔协议》(巴塞尔协议 Ⅱ)中衡量市场风险的推荐方法。恰好在同一年,CVaR 作为新型的改进方法首次被学者提出。金融风险管理方法随着金融市场的发展和衍变而不断进行改进和完善,能否在危机中发挥对风险控制作用是衡量其实际效果的准则。本文以均值-CVaR 投资组合优化模型为核心,对中国股票市场的投资组合进行实际模拟,并比较了不同优化参数下的投资组合效果。总结来看有以下四点结论:
第一、对比 A 股市场与 H 股市场可以发现,不同的股票交易制度也会对风险度量产生一定的影响。从 CVaR 度量的角度分析,涨跌停板制度和 T+1 交易制度反而会导致 CVaR 值增大。说明在 A 股市场上,股票存在更加显着的尾部风险,CVaR 风险度量方法在 A 股市场是更具有合理性的。
第二、不论是均值-方差模型还是均值-CVaR 模型,只要对应的是同一组数据,最终可达到的最大收益是相同的。同时可取得的最大收益值与 CVaR 中置信度的大小无关,只与对应的最大 CVaR 取值有关。
第三、投资组合成分股中存在均值和 CVaR(或方差)最大和最小的成分,当一个投资组合只关注其中一个参数时,组合成分的多样性是递减的。因此投资组合成分多样性会随着 CVaR 值增大而先增强后减弱。
第四、最佳投资组合是相对而不是绝对的,取决于投资者对置信度和风险值的偏好。就文中实验结果来看,较高置信度与较高 CVaR 值相结合的策略更具有实际意义。
投资者利益最大化的本质、金融危机的周期性预示着金融风险的度量和管理也会是一个动态发展的过程。尤其在我国 A 股市场,由于市场不成熟,制度不完善等原因,CVaR 风险度量方法的运用能力还有待进一步提升,发展前进十分广阔。通过 CVaR 方法来优化投资组合结构,管理各类金融资产的风险具有显着意义,能够降低系统性金融风险爆发时的潜在损失,从而保护投资者利益、维护市场的稳定。
参考文献
[1]Harry M.Markowitz.Portfolio selection[J].Journal of Finance,1952.
[2]John C.Hull.Options,futures,and other derivatives[M].Pearson Education,2006.
[3]J.P.Morgan.Risk Metrics:Technical Document[Z].4th Ed.New York:Morgan Guaranty Trust Company,1996.
[4]Rockfeller T,Uryasev S.Conditional Value-at-Risk for general lossdistribution[J].Journal of Banking&Finance;,2002.
[5]曲圣宁,田新时.投资组合风险管理中 VaR 模型的缺陷以及 CVaR 模型研究[J].统计与决策,2005.
作者简介:倪耀琦(1994-),男,汉族,浙江绍兴人,湖北经济学院本科在读,专业:金融学。
作者 倪耀琦